๐Ÿ” ์ธ๊ณต์ง€๋Šฅ ํƒ์ƒ‰์•Œ๊ณ ๋ฆฌ์ฆ˜ - ๋งน๋ชฉ์  ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜

๋งน๋ชฉ์  ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜: DFS, BFS, ๊นŠ์ด ์ œํ•œ ํƒ์ƒ‰, ๋ฐ˜๋ณต์  ๊นŠ์ด ์‹ฌํ™” ํƒ์ƒ‰
ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ๊ณต์ง€๋Šฅ
avatar
2025.04.07
ยท
13 min read

๐Ÿ“Œ 1. ๋งน๋ชฉ์  ํƒ์ƒ‰(Blind Search)์ด๋ž€?

๋งน๋ชฉ์  ํƒ์ƒ‰(Blind Search)์€ ํƒ์ƒ‰ ๊ณผ์ •์—์„œ ๋ชฉํ‘œ ์ƒํƒœ๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ๋‚˜ ๋น„์šฉ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ณ , ๋‹จ์ˆœํ•œ ๊ทœ์น™์— ๋”ฐ๋ผ ํƒ์ƒ‰์„ ์ง„ํ–‰ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.
์ฆ‰, ํœด๋ฆฌ์Šคํ‹ฑ(heuristic) ์ •๋ณด ์—†์ด ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ๊ฒฝ์šฐ์˜ ์ˆ˜๋ฅผ ๋ฌด์ž‘์œ„๋กœ ํƒ์ƒ‰ํ•˜๋ฉฐ ํ•ด๊ฒฐ์ฑ…์„ ์ฐพ์Šต๋‹ˆ๋‹ค.

๐Ÿ“Œ ๋งน๋ชฉ์  ํƒ์ƒ‰์˜ ํŠน์ง•
โœ” ์‚ฌ์ „ ์ •๋ณด ์—†์ด ๋ชจ๋“  ๊ฒฝ๋กœ๋ฅผ ํƒ์ƒ‰
โœ” ๋น„ํšจ์œจ์ ์ผ ์ˆ˜ ์žˆ์œผ๋‚˜, ์™„์ „ ํƒ์ƒ‰์ด ๋ณด์žฅ๋จ
โœ” ์ตœ์ ์˜ ํ•ด๋ฅผ ๋ณด์žฅํ•˜์ง€ ์•Š์Œ (๊ฒฝ์šฐ์— ๋”ฐ๋ผ ์ตœ์  ๊ฒฝ๋กœ๊ฐ€ ์•„๋‹ ์ˆ˜๋„ ์žˆ์Œ)
โœ” ๊ทธ๋ž˜ํ”„ ๋˜๋Š” ํŠธ๋ฆฌ ๊ตฌ์กฐ์—์„œ ์‚ฌ์šฉ๋จ

๐Ÿ“Œ ๋Œ€ํ‘œ์ ์ธ ๋งน๋ชฉ์  ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜
1. ๊นŠ์ด ์šฐ์„  ํƒ์ƒ‰(DFS, Depth-First Search)
2. ๋„ˆ๋น„ ์šฐ์„  ํƒ์ƒ‰(BFS, Breadth-First Search)
3. ๊นŠ์ด ์ œํ•œ ํƒ์ƒ‰(DLS, Depth-Limited Search)
4. ๋ฐ˜๋ณต์  ๊นŠ์ด ์‹ฌํ™” ํƒ์ƒ‰(IDDFS, Iterative Deepening DFS)

์ด์ œ ๊ฐ๊ฐ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ•˜๋‚˜์”ฉ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.


๐Ÿ“Œ 2. ๊นŠ์ด ์šฐ์„  ํƒ์ƒ‰(DFS: Depth-First Search)

โœ… DFS๋ž€?

DFS(๊นŠ์ด ์šฐ์„  ํƒ์ƒ‰, Depth First Search)๋Š” ํ•œ ๊ฒฝ๋กœ๋ฅผ ๋๊นŒ์ง€ ํƒ์ƒ‰ํ•œ ํ›„, ๋‹ค๋ฅธ ๊ฒฝ๋กœ๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.
์ฆ‰, ๋จผ์ € ๊ฐˆ ์ˆ˜ ์žˆ๋Š” ๊ณณ๊นŒ์ง€ ์ตœ๋Œ€ํ•œ ๊นŠ์ด ํƒ์ƒ‰ํ•œ ํ›„, ๋ง‰ํžˆ๋ฉด ๋˜๋Œ์•„๊ฐ€ ๋‹ค๋ฅธ ๊ฒฝ๋กœ๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.

์ด๋ฏธ์ง€ ์ถœ์ฒ˜: ์œ„ํ‚ค๋ฐฑ๊ณผ, '๊นŠ์ด ์šฐ์„  ํƒ์ƒ‰'

๐Ÿ” DFS ๋™์ž‘ ๊ณผ์ •

  1. ์‹œ์ž‘ ๋…ธ๋“œ๋ฅผ ์Šคํƒ(Stack)์— ์‚ฝ์ž…ํ•˜๊ณ  ๋ฐฉ๋ฌธ ์ฒ˜๋ฆฌ

  2. ์Šคํƒ์˜ ์ตœ์ƒ๋‹จ ๋…ธ๋“œ์—์„œ ๋ฐฉ๋ฌธํ•˜์ง€ ์•Š์€ ์ธ์ ‘ ๋…ธ๋“œ๋ฅผ ์ฐพ์•„ ๋ฐฉ๋ฌธ ํ›„ ์Šคํƒ์— ์‚ฝ์ž…

  3. ๋” ์ด์ƒ ๋ฐฉ๋ฌธํ•  ๋…ธ๋“œ๊ฐ€ ์—†์œผ๋ฉด ์Šคํƒ์—์„œ ๋…ธ๋“œ๋ฅผ ๊บผ๋‚ด๋ฉฐ ๋ฐฑํŠธ๋ž˜ํ‚น(Backtracking)

  4. ๋ชฉํ‘œ ๋…ธ๋“œ๋ฅผ ์ฐพ๊ฑฐ๋‚˜ ๋ชจ๋“  ๊ฒฝ๋กœ๋ฅผ ํƒ์ƒ‰ํ•  ๋•Œ๊นŒ์ง€ ๋ฐ˜๋ณต


์ด๋ฏธ์ง€ ์ถœ์ฒ˜: ์œ„ํ‚ค๋ฐฑ๊ณผ, '๊นŠ์ด ์šฐ์„  ํƒ์ƒ‰'

โœ… DFS์˜ ํŠน์ง•

โœ” ์Šคํƒ(Stack) ๋˜๋Š” ์žฌ๊ท€(Recursion)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌํ˜„ ๊ฐ€๋Šฅ
โœ” ๊นŠ์€ ๊ณณ์— ์žˆ๋Š” ๋ชฉํ‘œ๋ฅผ ๋นจ๋ฆฌ ์ฐพ์„ ์ˆ˜ ์žˆ์Œ
โœ” ๊ฒฝ๋กœ๊ฐ€ ๋งค์šฐ ๊นŠ๊ฑฐ๋‚˜ ๋ฌดํ•œ ๋ฃจํ”„๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Œ โ†’ ๋ฐฑํŠธ๋ž˜ํ‚น ํ•„์š”

โœ… DFS ์ฝ”๋“œ ๊ตฌํ˜„ (Python)

def dfs(graph, node, visited=None):
    if visited is None:
        visited = set()
    visited.add(node)
    print(node, end=' ')
    for neighbor in graph[node]:
        if neighbor not in visited:
            dfs(graph, neighbor, visited)
    return visited

# ์˜ˆ์‹œ ๊ทธ๋ž˜ํ”„
graph = {
    'A': ['B', 'C'],
    'B': ['A', 'D', 'E'],
    'C': ['A', 'F'],
    'D': ['B'],
    'E': ['B', 'F'],
    'F': ['C', 'E']
}

# DFS ํ˜ธ์ถœ
dfs(graph, 'A')

๐Ÿ“Œ 3. ๋„ˆ๋น„ ์šฐ์„  ํƒ์ƒ‰(BFS: Breadth-First Search)

โœ… BFS๋ž€?

BFS(๋„ˆ๋น„ ์šฐ์„  ํƒ์ƒ‰, Breadth First Search)๋Š” ๋ชจ๋“  ์ด์›ƒ ๋…ธ๋“œ๋ฅผ ๋จผ์ € ํƒ์ƒ‰ํ•œ ํ›„, ๋‹ค์Œ ๊นŠ์ด์˜ ๋…ธ๋“œ๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.
์ฆ‰, ๊ฐ€๊นŒ์šด ๊ณณ๋ถ€ํ„ฐ ์ฐจ๋ก€๋Œ€๋กœ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.

๐Ÿ” BFS ๋™์ž‘ ๊ณผ์ •

  1. ์‹œ์ž‘ ๋…ธ๋“œ๋ฅผ ํ(Queue)์— ์‚ฝ์ž…ํ•˜๊ณ  ๋ฐฉ๋ฌธ ์ฒ˜๋ฆฌ

  2. ํ์—์„œ ๋…ธ๋“œ๋ฅผ ๊บผ๋‚ด๊ณ , ๋ฐฉ๋ฌธํ•˜์ง€ ์•Š์€ ์ธ์ ‘ ๋…ธ๋“œ๋ฅผ ๋ชจ๋‘ ํ์— ์‚ฝ์ž…

  3. ๋ชฉํ‘œ ๋…ธ๋“œ๋ฅผ ์ฐพ๊ฑฐ๋‚˜ ๋ชจ๋“  ๊ฒฝ๋กœ๋ฅผ ํƒ์ƒ‰ํ•  ๋•Œ๊นŒ์ง€ ๋ฐ˜๋ณต
    DFS(๊นŠ์ด์šฐ์„ ํƒ์ƒ‰)๊ณผ์˜ ๋น„๊ต

    ์ด๋ฏธ์ง€ ์ถœ์ฒ˜: ์œ„ํ‚ค๋ฐฑ๊ณผ, ๋„ˆ๋น„์šฐ์„ ํƒ์ƒ‰

โœ… BFS์˜ ํŠน์ง•

โœ” ์ตœ๋‹จ ๊ฒฝ๋กœ ํƒ์ƒ‰์— ์œ ๋ฆฌ
โœ” ํ(Queue)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌํ˜„
โœ” ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์ด DFS๋ณด๋‹ค ๋งŽ์Œ

โœ… BFS ์ฝ”๋“œ ๊ตฌํ˜„ (Python)

from collections import deque

def bfs(graph, start):
    visited = set()
    queue = deque([start])
    visited.add(start)
    while queue:
        vertex = queue.popleft()
        print(vertex, end=' ')
        for neighbor in graph[vertex]:
            if neighbor not in visited:
                visited.add(neighbor)
                queue.append(neighbor)

# ์˜ˆ์‹œ ๊ทธ๋ž˜ํ”„
graph = {
    'A': ['B', 'C'],
    'B': ['A', 'D', 'E'],
    'C': ['A', 'F'],
    'D': ['B'],
    'E': ['B', 'F'],
    'F': ['C', 'E']
}

# BFS ํ˜ธ์ถœ
bfs(graph, 'A')

๐Ÿ“Œ BFS ์‹คํ–‰ ๊ฒฐ๊ณผ ์˜ˆ์‹œ

A B C D E F

๐Ÿ“Œ 4. ๊นŠ์ด ์ œํ•œ ํƒ์ƒ‰(DLS: Depth-Limited Search)

โœ… DLS๋ž€?

DLS(๊นŠ์ด ์ œํ•œ ํƒ์ƒ‰)๋Š” DFS ๋ฐฉ์‹๊ณผ ๋™์ผํ•˜์ง€๋งŒ, ํƒ์ƒ‰ํ•  ์ตœ๋Œ€ ๊นŠ์ด๋ฅผ ์ œํ•œํ•˜์—ฌ ๋ฌดํ•œ ๋ฃจํ”„๋ฅผ ๋ฐฉ์ง€ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.
์ฆ‰, ๊นŠ์ด ์ œํ•œ์„ ์„ค์ •ํ•˜์—ฌ, ํ•ด๋‹น ๊นŠ์ด๊นŒ์ง€๋งŒ ํƒ์ƒ‰์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ” DLS ๋™์ž‘ ๊ณผ์ •

  1. DFS ๋ฐฉ์‹์œผ๋กœ ํƒ์ƒ‰์„ ์ง„ํ–‰ํ•˜๋˜, ํ˜„์žฌ ํƒ์ƒ‰ ๊นŠ์ด๊ฐ€ ์ œํ•œ ๊นŠ์ด์— ๋„๋‹ฌํ•˜๋ฉด ํƒ์ƒ‰์„ ์ค‘๋‹จ

  2. ๋ชฉํ‘œ ๋…ธ๋“œ๋ฅผ ์ฐพ๊ฑฐ๋‚˜ ํƒ์ƒ‰์ด ๋๋‚  ๋•Œ๊นŒ์ง€ ๋ฐ˜๋ณต

โœ… DLS์˜ ํŠน์ง•

โœ” DFS์˜ ๋ฌดํ•œ ๋ฃจํ”„ ๋ฌธ์ œ ํ•ด๊ฒฐ ๊ฐ€๋Šฅ
โœ” ๋„ˆ๋ฌด ๊นŠ์€ ๊ฒฝ๋กœ๋ฅผ ํƒ์ƒ‰ํ•˜์ง€ ์•Š๋„๋ก ์กฐ์ ˆ ๊ฐ€๋Šฅ
โœ” ์ตœ์  ํ•ด๋ฅผ ๋ณด์žฅํ•˜์ง€ ์•Š์œผ๋ฉฐ, ๋ชฉํ‘œ๊ฐ€ ๊นŠ์€ ๊ณณ์— ์žˆ์œผ๋ฉด ํƒ์ƒ‰ ์‹คํŒจ ๊ฐ€๋Šฅ

โœ… DLS ์ฝ”๋“œ ๊ตฌํ˜„ (Python)

def dls(graph, node, goal, depth_limit, depth=0):
    if depth > depth_limit:
        return False
    print(node, end=' ')
    if node == goal:
        return True
    for neighbor in graph[node]:
        if dls(graph, neighbor, goal, depth_limit, depth+1):
            return True
    return False

# ์˜ˆ์‹œ ๊ทธ๋ž˜ํ”„
graph = {
    'A': ['B', 'C'],
    'B': ['D', 'E'],
    'C': ['F'],
    'D': [],
    'E': ['F'],
    'F': []
}

# DLS ํ˜ธ์ถœ
print("\nDLS ํƒ์ƒ‰ ๊ฒฐ๊ณผ:")
dls(graph, 'A', 'F', 2)

๐Ÿ“Œ DLS ์‹คํ–‰ ๊ฒฐ๊ณผ ์˜ˆ์‹œ (๊นŠ์ด ์ œํ•œ 2์ผ ๋•Œ)

A B D E C

๐Ÿ“Œ 5. ๋ฐ˜๋ณต์  ๊นŠ์ด ์‹ฌํ™” ํƒ์ƒ‰(IDDFS: Iterative Deepening Depth-First Search)

โœ… IDDFS๋ž€?

IDDFS(๋ฐ˜๋ณต์  ๊นŠ์ด ์‹ฌํ™” ํƒ์ƒ‰)๋Š” ๊นŠ์ด ์ œํ•œ ํƒ์ƒ‰(DLS)์„ ์—ฌ๋Ÿฌ ๋ฒˆ ์ˆ˜ํ–‰ํ•˜๋ฉด์„œ ํƒ์ƒ‰ ๊นŠ์ด๋ฅผ ์ ์ง„์ ์œผ๋กœ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.
์ฆ‰, ๊นŠ์ด ์ œํ•œ์„ 1๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด ์ ์ง„์ ์œผ๋กœ ๋Š˜๋ ค๊ฐ€๋ฉด์„œ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ,
DFS์˜ ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์„ฑ๊ณผ BFS์˜ ์ตœ๋‹จ ๊ฒฝ๋กœ ๋ณด์žฅ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ž…๋‹ˆ๋‹ค.

๐Ÿ” IDDFS ๋™์ž‘ ๊ณผ์ •

  1. ๊นŠ์ด ์ œํ•œ ํƒ์ƒ‰(DLS)์„ ๊นŠ์ด 0๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜์—ฌ ํ•˜๋‚˜์”ฉ ์ฆ๊ฐ€์‹œํ‚ค๋ฉฐ ๋ฐ˜๋ณต ์‹คํ–‰

  2. ๋ชฉํ‘œ ๋…ธ๋“œ๋ฅผ ์ฐพ๊ฑฐ๋‚˜ ํƒ์ƒ‰์ด ๋๋‚  ๋•Œ๊นŒ์ง€ ๋ฐ˜๋ณต

  3. DLS์˜ ๊นŠ์ด๋ฅผ ๊ณ„์† ์ฆ๊ฐ€์‹œํ‚ค๋ฉฐ ์ตœ์ ์˜ ํ•ด๋ฅผ ์ฐพ์Œ

โœ… IDDFS์˜ ํŠน์ง•

โœ” DFS์˜ ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์„ฑ๊ณผ BFS์˜ ์ตœ๋‹จ ๊ฒฝ๋กœ ๋ณด์žฅ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•œ ๋ฐฉ์‹
โœ” ๋ฉ”๋ชจ๋ฆฌ๋ฅผ DFS๋ณด๋‹ค ์ ๊ฒŒ ์‚ฌ์šฉํ•˜๋ฉด์„œ๋„ BFS์ฒ˜๋Ÿผ ์ตœ๋‹จ ๊ฒฝ๋กœ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์Œ
โœ” ์ค‘๋ณต ํƒ์ƒ‰์ด ๋งŽ์•„์งˆ ์ˆ˜ ์žˆ์–ด ์‹คํ–‰ ์‹œ๊ฐ„์ด ๊ธธ์–ด์งˆ ์ˆ˜๋„ ์žˆ์Œ

โœ… IDDFS ์ฝ”๋“œ ๊ตฌํ˜„ (Python)

def dls(graph, node, goal, depth_limit, depth=0):
    """๊นŠ์ด ์ œํ•œ ํƒ์ƒ‰(DLS) ํ•จ์ˆ˜"""
    if depth > depth_limit:
        return False
    print(node, end=' ')
    if node == goal:
        return True
    for neighbor in graph[node]:
        if dls(graph, neighbor, goal, depth_limit, depth + 1):
            return True
    return False

def iddfs(graph, start, goal, max_depth):
    """๋ฐ˜๋ณต์  ๊นŠ์ด ์‹ฌํ™” ํƒ์ƒ‰(IDDFS) ํ•จ์ˆ˜"""
    for depth in range(max_depth + 1):
        if dls(graph, start, goal, depth):
            return True
    return False

# ์˜ˆ์‹œ ๊ทธ๋ž˜ํ”„
graph = {
    'A': ['B', 'C'],
    'B': ['D', 'E'],
    'C': ['F'],
    'D': [],
    'E': ['F'],
    'F': []
}

# IDDFS ํ˜ธ์ถœ
print("\nIDDFS ํƒ์ƒ‰ ๊ฒฐ๊ณผ:")
iddfs(graph, 'A', 'F', 3)

๐Ÿ“Œ IDDFS ์‹คํ–‰ ๊ฒฐ๊ณผ ์˜ˆ์‹œ (์ตœ๋Œ€ ๊นŠ์ด 3์ผ ๋•Œ)

A B D E C F

โœ… IDDFS์˜ ์žฅ์ ๊ณผ ๋‹จ์ 

๐ŸŸข ์žฅ์ 

์žฅ์ ์„ค๋ช…

์ตœ์  ํ•ด(Shortest Path) ๋ณด์žฅ

BFS์ฒ˜๋Ÿผ ์ตœ๋‹จ ๊ฒฝ๋กœ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์Œ

๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ์ด ์ ์Œ

DFS์ฒ˜๋Ÿผ ๊นŠ์ด ํƒ์ƒ‰ ๋ฐฉ์‹์ด๋ฏ€๋กœ ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์ 

๋ฌดํ•œ ๋ฃจํ”„ ๋ฐฉ์ง€ ๊ฐ€๋Šฅ

๊นŠ์ด ์ œํ•œ์ด ์ฆ๊ฐ€ํ•˜๋ฉด์„œ ๊ฒฐ๊ตญ ๋ชจ๋“  ๋…ธ๋“œ๋ฅผ ํƒ์ƒ‰ ๊ฐ€๋Šฅ

๐Ÿ”ด ๋‹จ์ 

๋‹จ์ ์„ค๋ช…

์ค‘๋ณต ํƒ์ƒ‰ ๋ฐœ์ƒ

๊นŠ์ด๋ฅผ ์ฆ๊ฐ€์‹œํ‚ฌ ๋•Œ๋งˆ๋‹ค ๋™์ผํ•œ ๋…ธ๋“œ๋ฅผ ๋‹ค์‹œ ํƒ์ƒ‰

์‹œ๊ฐ„์ด ์˜ค๋ž˜ ๊ฑธ๋ฆด ์ˆ˜ ์žˆ์Œ

๊นŠ์ด๊ฐ€ ๊นŠ์–ด์งˆ์ˆ˜๋ก ์—ฐ์‚ฐ๋Ÿ‰์ด ๋งŽ์•„์งˆ ์ˆ˜ ์žˆ์Œ


๐ŸŽฏ ๋งˆ๋ฌด๋ฆฌ: ๋งน๋ชฉ์  ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋น„๊ต

์•Œ๊ณ ๋ฆฌ์ฆ˜ํƒ์ƒ‰ ๋ฐฉ์‹์ตœ์  ๊ฒฝ๋กœ ๋ณด์žฅ ์—ฌ๋ถ€์žฅ์ ๋‹จ์ 

DFS

๊นŠ์ด ์šฐ์„  ํƒ์ƒ‰

โŒ

๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์ 

๋ฌดํ•œ ๋ฃจํ”„ ๊ฐ€๋Šฅ

BFS

๋„ˆ๋น„ ์šฐ์„  ํƒ์ƒ‰

โœ…

์ตœ๋‹จ ๊ฒฝ๋กœ ๋ณด์žฅ

๋ฉ”๋ชจ๋ฆฌ ์†Œ๋ชจ ๋งŽ์Œ

DLS

๊นŠ์ด ์ œํ•œ ํƒ์ƒ‰

โŒ

๋ฌดํ•œ ๋ฃจํ”„ ๋ฐฉ์ง€

์ตœ์  ๊ฒฝ๋กœ ์ฐพ๊ธฐ ์–ด๋ ค์›€

IDDFS

๋ฐ˜๋ณต์  ๊นŠ์ด ์‹ฌํ™” ํƒ์ƒ‰

โœ…

BFS์ฒ˜๋Ÿผ ์ตœ๋‹จ ๊ฒฝ๋กœ ๋ณด์žฅ

์ค‘๋ณต ํƒ์ƒ‰ ๋งŽ์Œ







- ์ปฌ๋ ‰์…˜ ์•„ํ‹ฐํด